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DYNAMIC PROBLEMS FOR A PLANE AND CYLINDRICAL VISCOELASTIC LAYER PARTIALLY 
ADHERENT TO A STIFF RING* 

S.I. GRITSENKO 

The plane problem is examined of the shear-vibration of an infinite stiff 
viscoelastic layer covering that adheres partially to an undeformable 
cover-foundation: rigidly along a strip of width 2a, and in frictionless 
contact outside this strip. In addition, an analogous axisymmetric problem 
is considered for a cylindrical viscoelastic layer. The layer is 
partially adherent to a ring along one surface: rigidly along a band of 
width 2a and without friction outside this band, and it is rigidly adherent 
to a ring vibrating in the axial direction along the other surface. 

Mixed boundary value problems reduce to the solution of an integral 
equation of the first kind which reduces, in turn, to an infinite system 
of linear algebraic equations. Certain results are presented of a numerical 
solution of the problems posed. Solutions are compared for the visco- 
elastic and corresponding elastic problems. The efficiency of two methods 
of solving the integral equation, reduction to an infinite system and 
approximation of its kernel, is compared for the latter problem. 

1. We examine the plane problem of steady vibrations of a viscoelastic layer O:<z<h, 
Iz I< co lying on an undeformable foundation z = 0. The layer is rigidly aherent to the 
foundation along the strip 1 J I< a of width 2a and makes friction-free contact outside this 
strip. Along the whole upper boundary z = h the layer is rigidly aherent to an undeformable 
covering vibrating in a tangential direction (problem A). The boundary conditions of problem 
A have the form 

u, (5, h, t) = U,e-'O', u, (z, 1~~ t) = 0 
u, (5, 0, t) = 0, I r I < CQ 
u, (I, 0, t) = 0, 1% I < a; z,, (2, 0, 1) = 0, 12 I > (1 

In addition to problem A, we consider an analogous axisymmetric problem for a viscoelastic 
cylindrical layer R,.< T< &,, Iml<= (the third cylindrical coordinate z is replaced here 
by z for uniformity in the subsequent calculations). The cylindrical layer is rigidly adherent 
to a fixed undeformable ring along a strip Iz I< a of width 2a at its inner surface r = R, 
and abuts it without friction outside the strip. Along the whole external surface r=Rh the 
cylindrical layer is rigidly adherent to an undefonnable ring vibrating in the axial direction 
(problem Bl). The boundary conditions of problem Bl have the form 

u, (R,,, x, t) = U,,e-'w', II, (R,,, 5, t) = 0 
u, (R,, 5. t) = 0, I z I < - 
u, (Ro, 5, 4 = 0, I z I < a; z, (R,, 5, t) = 0, Ix I > a 
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We also consider the problem B2 that differs from problem Bl by the mutual interchange 
of the boundary conditions on the inner and outer surfaces of the cylindrical layer. The 
boundary conditions of such a problem have the form 

u, (RO, 5, t) = U,e-'U', U, (R,, z, t) = 0 

u, (Rh, r, t) = 0, 15 I< 00 
u, (Rh, 2, t) = 0, 1 x i < a; Trx (Rh, 5, t) = 0, / z 1 > a 

By a Fourier integral transform in the coordinate z the corresponding elastic mixed 
boundary value problems can be reduced to an integral equation of the first kind in the 
amplitude values of the tangential contact stresses T(2) on the adhesion section I Ic 1 & a 

f h-(~--E)r(E)dS=2nUo~f(x,), jtj<a 
-a (1.1) 

Here 

k(t)=lK(u)eiYidu, K(U)=+?& 
r 

(1.2) 

S (u) = u1 (u’ ch o1 sh u2 - oIu2 sh u1 ch u2) 
.II(u)=u%~u~(chu~ch uz- l)- 

i 
u4_u2v ++)sh~lshu, 

j(x,)=-- -& a=& u,=J~u2-x32, j=1,2 

p&h2 x12=7 i - 2v , x1*= x2*- (problem A) 
2 (I- v) 

f (%*) = 25(,n-’ (Jo (x,B) N, (xt) - J, (y.P) No (xeB))‘l 

L-g, /3=+. u,=1/u2- xj2, j=1,2 

pdR,2 
xp? =7, x1? zzz 2 I- 2x1 x - 2 2(1-v) (problem Bl) 

The functions .\I(u),J~(u), f(Y.2) of the problem B2 differ from the corresponding functions 
of problem Bl by the mutual replacement 

2, (Uj) .2 2, (Ujf3)T j = 1, 2; II’ = 0, 1 

where Z,(Z) denotes any of the Bessel functions I,. (z), K, (zj: J, (z), and NV (2). 
The p in (1.2) is the density, G is the shear modulus, v is Posson's ratic for the elastic 

material of the layer, and o is the angular frequency. 
The function K(U) of the elastic problem is even, real on the real axis, and meromorphlc 

in the complex plane. The following representation holds: 

K(n)= K(0) fi (U* --F,*)(U2 -z2,2)_' (1.3) 
?I==1 

where &,,Z, are, respectively, the zeros and poles of the function K(U) from the upper half- 
plane, whose moduli increase monotonically as the number increases to ensure convergence of 
the infinite product (1.3). A finite number of zeros and poles can lie on the real axis. 
The contour of integration r is selected in conformity with the radiation conditions as in 

/l/. We also note that the following estimate holds as Iu I-+co 

K (u) = y I u 1-l + 0 ( I u I-7 (1.4) 

where A y = -'1'&'(3 - 4V)(i - V)-’ for problem A. 
In the case of steady harmonic vibrations 

0 (f) = u,e-im', E (1) = eOe-ioi (1.5) 

the integral equation of the viscoelastic problem can be obtained formally from (1.1) by 
replacing the elastic moduli by the complex viscoelastic moduli /2/. Without loss of generality, 

we will limit ourselves henceforth to a three-constant linear deformation law /2/ 

G (t) = G, t_ G#*: (1.6) 

Here G, is the creep shear modulus, G1 is the instantaneous shear modulus, and t, is 

the relaxation time. We shall also assume that Poisson's ratio is a constant. 
The expression for the real and imaginary parts of the complex modulus G* (0) corresponding 

to the selected relaxation function (3.6), is obtained by substituting 11.51 and (1.6: into 



the governing relations of linear viscoelasticity 

a(l)= i G@-7)&.(T)& 
-ce 

fntegrating in (1.71, we arrive at the relationship 
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(1.5) 

aoe-fwf = G* (co) q,e-f@f 
R~G*(o)=G~+~G,, ImG*(u)= --PI; p= ot, 

If-P’ 

The components of the complex modulus can be found analogously in the case Of other 
linear deformation laws. 

The function g(u) of the viscoelastic problem (o<p<m) is even, and meromorphic in 
the complex plane. The representation (1.3) and the estimate (1.4) hold for K(u). Meanwhile, 
this function is complex-valued on the real axis and has real zeros and poles. In this case 
the contour I' agrees with the real axis. 

2. We now turn to the solution of the integral Eq.Cl.1). To solve the elastic and 
viscoelastic problems we will apply the same method. Following ./3/ and taking account of the 
evenness of the desired solution, we seek it in the form 

T (5)= Bo + 2 2B*&~" ch i[,s (2.1) 
?i =1 

Here B,, B,, are constants to be determined, and. 5, are zeros of the function K(u) from 
the upper half-plane. 

Satisfying (1.1) by direct substitution of the series (2.11 /4/, we arrive at an infinite 
system of linear algebraic equations to determine the unknowns 3, and B,, (in matrix form) 

AB = CB + D (2.2) 
A = {G,,) = {bn - LJ’), B = ml), C = {Cm,} 

Cm?3 = -exp (2ia:,,) (z,,, -I- &)-I, D = {d,} = {--Boil,} 
m=l,Z,... 
B. = U*~~(~~)K(O) = ZU,Ax,!'sinx, (problem A) 
BI, = 2Uon-ld fJ,(x,)N,, (x&) - Jo (x&No fx.Jl-' (problem Bl) 

The system of the first kind obtained with a singular matrix must be regularized, i.e., 
by inverting the singular part resulting in a system of the second kind 

B = A-‘CB -+ A-‘D (2.3) 
Inversion of the matrix A is examined in /3/ and formulas are presented to find the 

inverse matrix A-’ which will not be written down here. It is alsc shot&n there that system 
(2.3) will be quasicomFletely regular. 

Displacements of the layer surface outside the rigid adhesion section can be found from 
the formula 

Substituting !2,1! into (2.43 and integrating, we obtain 

A,esp [i(+,(.c -a) -at] (2.5) 

Therefore, the solution of the infinite system (2.31 must be known to calculate the 
displacements by means of (2.5;. 

3. As a numerical exampie, we will consider the sclution of the viscoelastic problem A 
for the following values of tkLe parameters: 

(3.1) 

To calculate the contact stresses by means of (2.1)) it is necessary to determine the 
unknown constants B,, B,, by solving the system of Eq.(2.3). To do this, 
primarily to find the zeros and poles of the function 

it is required 
R(U) in the upper half-plane. Their 
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location depends substnatially on the value of the parameter P= alI. The trajectories of 
motion of the first three zeros and poles of the function h'(u) are shown in Fig.1 as the 
parameter p changes from zero (open Circles) to infinity (crosses). The arrow indicates the 

direction in which p increases, the end of the arrow corresponds to the value A= 0.1, and tne 
dark point to the value p= 1. It is seen that the location of the zeros and poles 
most strongly on p when it is small. 

depends 
The zero and pole that are real for A= i) (elastic 

problem) are comparatively remote from the real axis even for p = 0.1 , which results in a 
decrease in the dimensionless contact stresses T(r)/B,. 

Knowing Ln and z, we can find B, and Bn from the infinite system of linear algebraic 
Eq.(2.3). The reduction method which is effective for small values of the geometric parameter 

'., can be used for its solution. The method can also be used for large i, by increasing 
the number of equations. 

For a numerical solution of system (2.21, it need not certainly be reduced to the form 
(2.31, that results in awkward formulas, but can be solved directly in the form (2.2) _ A 
numerical experiment showed that the solutions of system (2.31 by iterations and cf (2.2) by 
Gauss's method with sampling of the pirncipal element are practically in agreement. This fact 
was also noted in /5/. 

Graphs of the real part of the dimensionless contact stresses T*(z)= Re[T(z)/B,] are 
presented in Fig.2 for p = O,O.O5, and 0.5 (curves 1, 2, 3, respectively). As the parameter 
p increases form 0 to 0.5 the amplutude T*(I) decreases radically, changes negligibly for 
p E lO.5, 11 , and increases somewhat as p increases to m. For A=CC we again arrive at the 
elastic problem. When carrying out the calculations to construct the graphs in Fig.2, system 
(2.2) was cut off to 20-th order, which enabled us to find T*(z) to 0.5% accuracy for II/-‘co&. 

The dependence of TO= 1 T'(o) on the dimensionless frequency xzo is presented in Fig.3 
when nel. Curves 1, 2,3, correspond to p= 0.15, 0.5, and 2. It is seen that as the parameter 
p increases, the resonance frequencies shift to the right. 

Fig.1 

4. Another method of solving 

K (u) by another function K* (u) 

Fig.2 IT1g.3 

the integral Eq.(l.l), based on approximating the functicn 
/3/ whose zeros and poles are easily found, is possible 

for the elastic problem. The form of the approximating function can be the following, say: 

(‘1.1) 

where cp (u) = u-lth ccu or cp(u) = (a" -+ CL-~)-'~', and a, y are constants, where the quantity T 

is the same as in (1.4), ci,Zi are the real zeros and poles of the function K(u), and Ps.~, 

Q2s are reduced polynomials of even equal powers in u whose coefficients are selected from 
the condition for the best uniform approximation of the function X(U) on the real axis. 

Using the arbitrariness in the selection of the parameter a, we set a< 1. In the case 
when T(U)= u-lthau the zeros of the function tanh CLU by which the solution of (2.1) is 

constructed, will here be very large compared with the zeros of the polynomial PZN b), and 

the components corresponding to the real zeros 5,(n = 1,2,...,M) of the function K(u) and 
the zeros &* (n = $1 f 1,...,M + A’) of the polynomial P,x(u) will yield the maincontribut 

to the solution 

T(s)= BO + 22B,exp(i:,a)ch (&r)+ 

M+N 
2B,exp(i;,,*a)ch(i:, *l)+o(cxp(- %)) 

lz=M--1 

(4.2) 

ion 
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Setting a<(1 in the approximation (4.1) for q(n)= (u2+ a-*)-'/2, the branch point 
11 = c-Ii of the function K*(u) can be raised as high as desired, which will enable the 
values of the integrals along the slit edges 1 u I> la-Ii I, arg u = xi2 to be estimated and 

made as small as desired, as we do to close the contour r in the upper half-plane. In this 

case, when using the approximation (4.1) for any of the functions q(u) mentioned, truncating 
the infinite system (2.2) to the (M + N)-th order will be natural. 

As a numerical example, we Will examine the solution of the elastic problem A (P = 9) 
for values of the parameters (3.1). For N= 2 an approximating function of the form (4.1) is 

.=-t,’ u’+Au’+B 
IT* (4 = w (4 - us - Zl’ u'+Cu'+ D (4.3) 

t,’ B 
p(u)=fr’thau, ya---- al* D = K (O) 

Y= -6508929, 6, = 1,82985, I~= 269083. a = 0,1 A = 30,3394, B = 134,45382, 
C = 1,29137, D = 3,87876 

The error in such an approximation does not exceed 4%. To determine the constants B, 

in solution (4.2) when using approximation (4.3), the system truncated to the third order 
must be solved where ~l,s* = f1,14349 + O,Si3561, &* = 2,324381, &,* = 4,995061. 

The dimensionless contact stresses ?'*(I) found by the approximation method have a 16% 
error in amplitude. As the parameter L decreases, the error increases and for )c=O.iS reaches 
25%. The error was estimated by comparing with the solution found in Sect.3 by the method of 
reduction (curve 1, Fig.Z), which had comparatively high accuracy. 

An analogous pattern is observed even when using an approximation of the form (4.3) with 
cp (U) = (I? + a-*)-"., a-* = 60, A = 21303274, B = 131,23141, C = l,3782173, D = 4,887442 (v, 5,,z, are the same as 
in (4.3)), whose error is 6%. 

Therefore, the method of approximation should be used with care. 
To reduce the error, the order of the polynomials Pan and QzN(u) should be increased, 

but this complicates the calculation substantially. Meanwhile, if the first complex zeros 
and poles of the functions K(u) are known from the upper half-plane c1,3 = _+1.8603+ 2.4859i, z~,~ = 
t0.98i5 -+ 1.3009i, then A, B, C, D, can be determined without solving the problem of minimizing 
the functional 

and setting 

The parameter a is not selected arbitrarily here, but by starting from the condition 
K'(O)= K(0). In this case we obtain the following values of the parameters therein: a-*= 14.1973, 
A = 5.43797, B = 92.9376, D = 7.11554, C = 1.43437 for approximation (4.3) with P(U)= (IL*+ a*)-"*. The 
error in the approximation on the real axis does not exceed 5.5%. Knowing the subsequent 
poles and zeros of the function K(U), we can raise the order of the polynomials P,N(~) and 
QIN(4 and obtain a corresponding approximation with smaller error. Thus for N=4 the error 
is 3% (a-l= 43.6148), while for A'= 6 the error is reduced to 2S(a+= 87.5302), etc. 

Partial adhesion of the layer to the undeformable cover was assumed above, where the 
domain of rigid adhesion Q is the segment [--a; +a]. It should be noted that the problems 
considered can be solved even for domains Q of the form 

[--a; --bl U I-i-b;+al and (-w; --al IJ [+a;+ 00) 

by the same methods as in /6/. 

The author is grateful to V.M. Aleksandrov for his interest. 
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